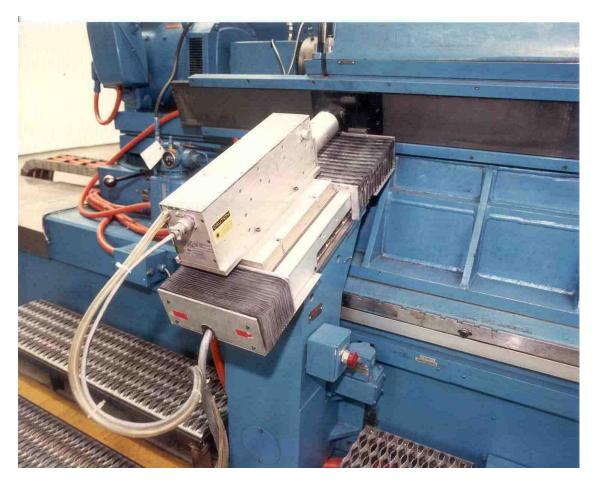
Lasertalk Sales Demonstration


Lasertalk was founded in 1995 some twenty years ago focusing our energies on non-contact measurement instrumentation. Our primary product line is directed to the jet engine industries. Our personnel have been serving this industry for more than 35 years qualifying us as the one of the best companies in the jet engine rotor measurement field.

Our personnel were a part of the original design team that developed the LaserMike "E-rom" measurement system, that was the industry standard for many years.

Original "E-rom" measurement system

The same design team, working in conjunction with General Electric, went on to develop the next generation gauge a much faster and more accurate gauge, the LaserMike model 81, which continued to dominate the industry as the standard for rotor measurement.

Original LaserMike model 81 Laser Probe

Lasertalk, realizing that there are newer technologies that could make major improvements over the, LaserMike model 81, Lasertalk has gone on to develop the next generation laser gauge Model LT81 designed to address the industries needs with significant improvements over the previous LaserMike model 81.

Lasertalk Model LT81 Laser Probe

What is it?

The LT81 is a form, fit, function replacement for the LaserMike Model 81

The LT81 consists of a high speed laser-diode based probe and a PC computer running a windows operating system as the user interface

Model LT81 Features

Enhanced Performance

- Improved blade surface finish tolerance
- Improved blade reflection tolerance
- DSP technology
- Significantly faster measurement cycles
- Eliminates need to brush or de-burr before measurement

Added Capabilities

- Turbine (pocketed blade) measurement
- Automated blade setup program
- Lands and Seals measurement
- Total indicated run out (TIR) detection
- The ability to add and store notes specific to the product under test
- Automatic temperature compensation

Improved Operation

- User friendly Windows XP-based interface and control program
- Rotor library space virtually unlimited, with ability to organize into families
- Built in Operator's Manual
- Simple and automatic conversions from mm to inch and/or radius to diameter
- Results printed to local or networked Windows printer
- Results exported to Excel or XML formats for remote access and archiving
- Multiple security levels
- Automatic logging of operation or setup events
- Graphic display of measurement results
- Built-in test and diagnostics features
- Be prepared this system will tell you things about your process that

were not possible with the older system

Improved Reliability & Serviceability

- "Drop-in" replacement for LaserMike Model 81 system (same form, fit, function)
- Solid state laser diode source
- Utilizes current technologies (eliminates obsolescence issues of LM 81)
- Eliminates shop air purging and contamination of optics
- Probe package is O-ring sealed to help keep optics clean.
- Modular mechanical and electronic design
- Software updates performed from PC, locally or remotely (via telephone or Internet connection)
- Remote assistance or maintenance via telephone or Internet connection
- Built in stop / crash switch
- Full set of manuals including operators, and technical

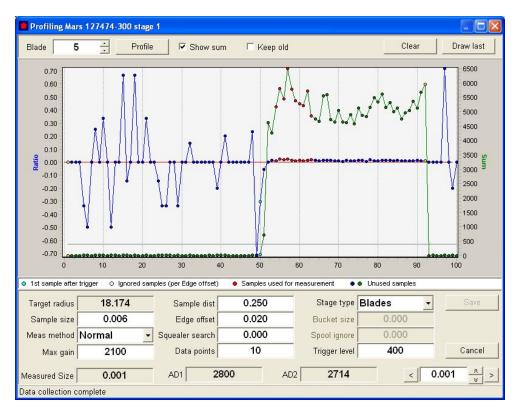
Product Comparison

The following tables provide a detailed comparison of the specifications between the Model 81 you are currently using (Old System) and the Lasertalk LT81.

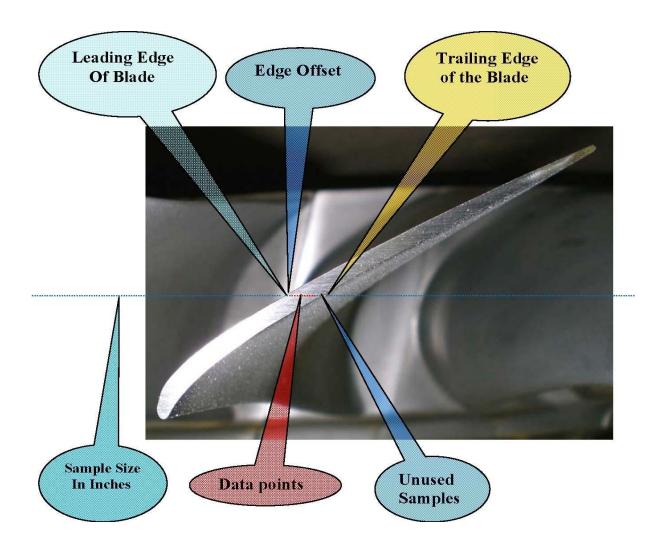
	Product Compariso	n
Specification	Model LT81	Model 81
Servo Positioning Range	10 Inches	10 Inches
Servo Positioning Range	16 Inches	16 Inches
Servo Positioning Range	20 Inches	20 Inches
Minimum Blade Thickness	0.010 Inches / 0.250 mm	0.030 Inches / 0.762 mm
Maximum DSP digitizing rate	2 MHz	NA
Maximum Blade tip velocity for Blades	7,000 inch/per second	
Maximum Blade tip velocity for Turbines	3,500 inch/per second	
Maximum RPM for Blades	10,000 RPM with 10 samples per blade	7000 RPM
Maximum RPM for Turbines		
Resolution per blade	± 0.00005 Inches (rounded to 0.0001) / 0.001 mm*	± 0.0001 Inches / 0.001 mm
Resolution per Stage	± 0.00005 Inches (rounded to 0.0001) / 0.001 mm*	± 0.0001 Inches / 0.001 mm
Repeatability per Blade	± 0.0001 Inches / 0.0025 mm*	± 0.0005 Inches / 0.013 mm
Repeatability per Stage	± 0.0001 Inches / 0.0025 mm*	± 0.0002 Inches / 0.005 mm
Repeatability - TIR	± 0.0001 Inches / 0.0025 mm*	± 0.0005 Inches / 0.013 mm
Repeatability Master Rotor	± 0.0001 Inches / 0.0025 mm*	± 0.0002 Inches / 0.005 mm
Measurement Time	5 Seconds or less	Up to 25 Seconds
Power Required	110 / 120 VAC, 50 / 60 Hz	110 / 120 VAC, 50 / 60 Hz
Operating Temperature	40 °F - 110 °F (4 °C - 40 °C)	40 °F - 110 °F (4 °C - 40 °C)
Specifications apply at	40 °F - 110 °F (4 °C - 40 °C)	70 °F±3 °F/21 °C±2 °C
Temperature compensation	Yes	N/A
Humidity	90% Maximum non-condensing	90% Maximum non-condensing
Focused Laser Spot size	0.001 Inches X 0.003 Inches at probe focal point	0.005 inches diverging at measurement point

	Pulsed Solid state Laser Diode,	CW Helium - Neon gas laser,
	680 nm - 695 nm, 35 mW maximum	632 nm, 2.5 mW maximum output
Laser Source	output power,	power,
	CDRH certified Class IIIb Laser product	CDRH certified Class II laser product

Using a significantly higher power laser diode as a light source we are able to overcome most surface finish issues that were a problem with the older model 81 gauges. We have doubled the laser safety features to prevent any unwanted laser emission from the laser gauge and we are in compliance with CDRH class IIIb product certification 21 CFR 1040.10 and 1040.11.

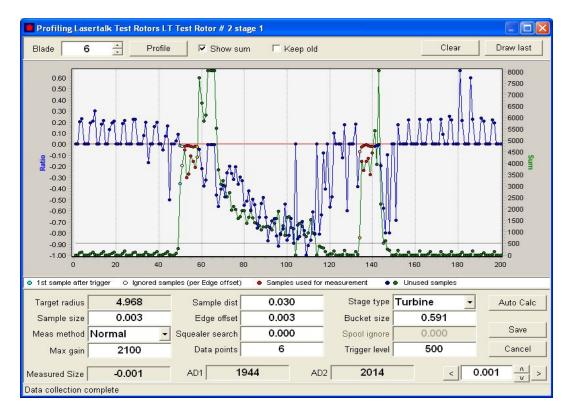



With the implementation of DSP technologies we are able to significantly increase the measurement speed, greatly reducing the cycle time, as a result increasing the through put of the grinding operation and at the same time improving the resulting accuracy of the

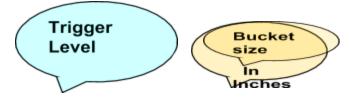

system. Another benefit of this technology is that you as the engineer of the process are able to select where you would like to take the samples over the blade tip ignoring any leading or trailing burrs that may develop during the grinding process. Elimination of the debarring process before measuring further improves the measurement process as the blade seating remains undisturbed prior to and during the measurement. Process time is further reduced by the fact that only one debarring process need be completed at the end of the grind cycle.

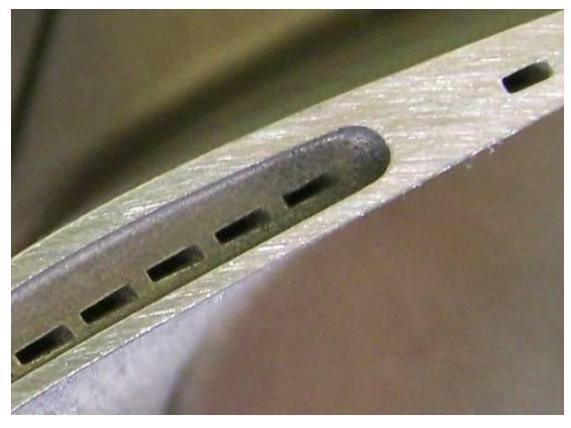
What you are looking at on a standard blade

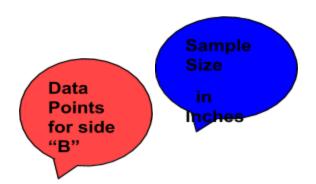
This is our Profiling page where the measurement area of the blade tip is selected by the Engineer during the initial setup, this is a onetime setup procedure and is stored within the rotor tables and is recalled from memory every time the product part number is called up to run. This is a very powerful tool to be used by your staff to evaluate the product properly. With this tool we can eliminate the need to de-burr before the measurement is taken, there by greatly reducing the grind cycle time.

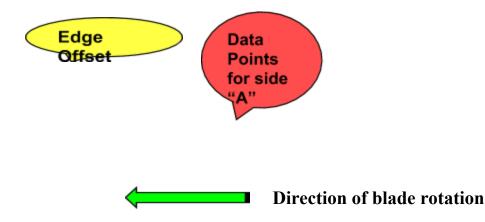


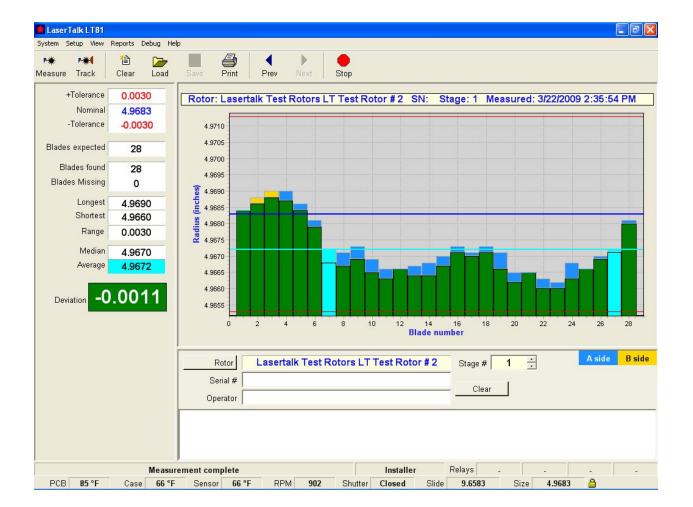
We have added measurement options for turbine / pocketed blade's, you now have the option of selecting the leading, trailing, or the average of both edges of the blades.


We have further enhanced the blade profiling tools of our software by making provisions to automatically calculate the needed parameters and at the same time giving the engineer to manually select the blade tip detail that they want to capture for the measurements.



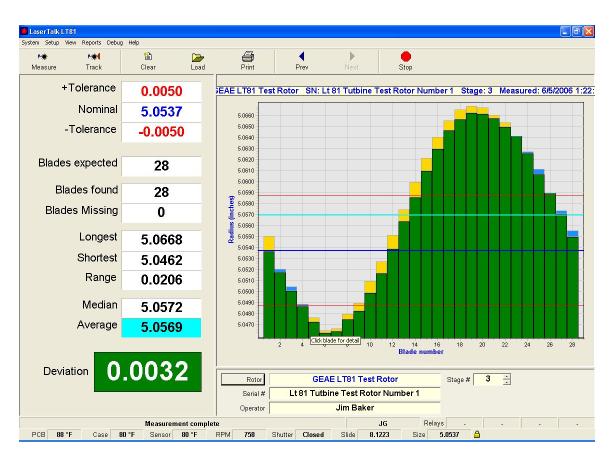

Before Auto calculation




After auto calculation

With the incorporation of a very small laser spot size and having reduced the package profile we now have the capability to measure lands and seals where space permits. In addition we can now measure rotating seals / shrouded blades.

Measuring rotating seals / shrouded blades


Trying to comply with our customers request we have added a note / comment area for production notes to be added to the measurement report and to follow the report to the archived storage of the measured product.

Using a propriety optical design we are able to minimize any optical reflections that would radiate from the product under test that would otherwise affect the measuring process.

In an effort to eliminate a concern with the older laser gauge we have incorporated temperature compensation into the design of the laser gauge, when this feature is setup and activated the temperature coefficient of the system is so low that we have not been able to measure it.

Preferences			
Operation Measurement	nt System Relays	Slide defaults Probe defaul	ts Test
Target radius	18.320	Temp comp 0	0.0
Sample size	0.003	Temp comp 1	0.0
Blades	58	Temp comp 2	0.0
Sample dist	0.080	Temp comp sensor	0
Bucket size	0.000	Temp target O	0.0
Edge offset	0.008	Temp target 1	0.0
Blade meas method	Normal 🚽	Temp target 2	0.0
Squealer search area	0.000	Spool angle	0
Turbine meas method	Normal 🚽	Max gain	2000
Spool meas method	Normal -	Trigger level	700
Spool ignore area	0.000	Data points	10
Lo	aded from rotor config	uration	
Calibrate laser	Reset D	SP Re	load Save in Flash
			Apply Close

We have incorporated three temperature sensors in the design of the laser probe one in the optical block assembly, the second is embedded in the electronics, and the third is to monitor the temperature of the probe housing. Our testing has indicated that the greatest change in the readings with respect to temperature is caused by the probe housing. If we chose to activate the automatic compensation we would select that sensor to control the compensation. This system provides an inherit ability to detect "Total indicated run out" from our main display screen at a glance when looking at the bar graph section of the display screen. As indicated by the sin wave of the bar graph.

This display page view illustrates what a typical TIR indication will look like, notice the Sin wave shape outline.

Improved Operation

User friendly Windows XP-based interface and control program

Our user interface is a standard PC allowing us to utilize the flexibility of the windows interface for the control of the process and provide your operators the familiarity of the operation and navigation through our powerful software.

• At power on before any action can take place the operator must log on to verify operational access to the system.

🛑 LaserTalk LT81		
System Setup View Reports H		
Measure Track Clear	Load Save Print	Prev Next Stop
+Tolerance	0.0025	Rotor type
Nominal	5.0500	
-Tolerance	0.0025	
Blades expected	0	
Blades found	0	
Blades missing	0	
Longest	0	
Shortest	0	
Range	0	
Median	0	
Average	0	
		Blade number
Deviation	0	Rotor GEAE LT81 Test Rotor Stage # 1
		Serial # Clear
		Operator
PCB 76 °F Case	Ready 58 °F Sensor 58 °F	Relays -

To log on one must select the SYSTEM tab then select USER, then the LOG IN

Security	
User name	Jim Baker
Password	****
Log ir	n Cancel

• Multiple security levels

- a. There are three levels of security each controlling various levels of access to the software operations.
 - The first and most used level is the operator; this level provides access to all of the necessary functions that is necessary for the normal operation of the system for day to day operation.
 - The second is administrator; this level allows access to all functions needed to set up the system rotors and various programming / diagnostic functions.
 - The third is the installer; this level is used during the installation to set up the machine interface parameters for the system installation.

Users		
User name	Security level	Add user
Admin Operator Installer Jim Baker	Administrator Operator Installer Operator	Delete user
		Increase security level
		Decrease security level
		Close

Managing user screen page

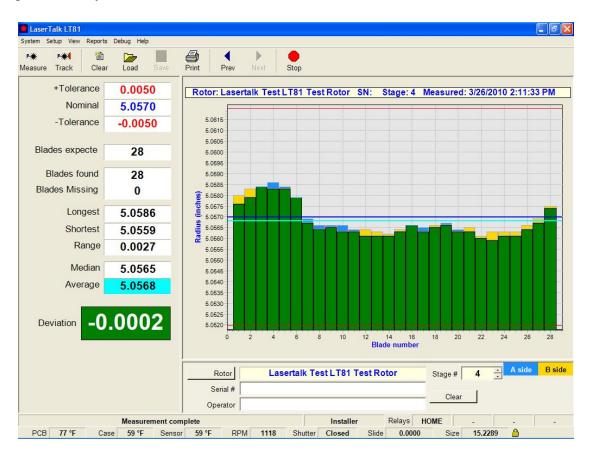
When the user is logged in and ready to run a given rotor, they select the proper rotor type by there standard process be it by loading a floppy disk, selecting from the library, or via a remote host PLC by assigning a CODE number from the PLC program. The library capacity is virtually unlimited with the ability to organize into families.

219648-100,219650-101	1	1								
219680-103	Sel	ect							_	Cancel
test						The sector	a the second second			
- 70's	Rotor	type				LT81	Test Rote	or		-
199393-102, 101					~					Confi
- 199400-102	Numb	er of stages	6 -	Radius		iches			Coc	le
- 330202-100				Diamet	er C m					
- 330393-104	Stage	Type	Count	Setpoint	Tol +	Tol -	Offset	Chord Width	Bucket Size	'At Size'
330403-102, 330603-102	1	Blades	28	5.0500	0.0025	0.0025	0.0000	0.0000	0.0000	0.0000
Cat Master	2	Blades	150	5.0381	0.0050	0.0050	0.0000	0.0100	0.0000	0.0000
Large	3	Blades	150	5.0381	0.0050	0.0050	0.0000	0.0100	0.0000	0.0000
Small	4	Turbine	28	5.0600	0.0050	0.0050	0.0000	0.0100	0.0000	0.0000
GE100 F119A in diam	5	Spool	30	5.1830	0.0050	0.0050	0.0000	0.0100	0.0000	0.0000
F119A in radius	6	Blades	142	5.0151	0.0020	0.0020	0.0000	0.0300	0.0000	0.0000
- F119A mm diam										
F119A mm radius										
GEAE										
CFM56-5BC										
CFM56-7B										
Copy of master test										
GUDY OF Master test										
LT81 Test Rotor										
LT81 Test Rotor										
– LT81 Test Rotor – Master rotor – Master test DK										
– LT81 Test Rotor – Master rotor										

•	Simple and automatic conversions from mm to inch and/or radius to	
	diameter	

Fixture 2 Number of stages 6 C Radius C Diameter C Inches mm Code 772-400 772-200 772-200 774-200 774-200 774-200 97-103, 102 97-103, 102	Master test DK						1 104	Test Date			-
Number of stages 6 Code Code 772-400 772-400 Tol + Tol + Tol - Offset Chord Width Bucket Size 'At Size 1 Blades 28 5.0350 0.0025 0.0000 0.0100 0.0000 0.0000 197-102 3 Blades 150 5.0381 0.0050 0.0005 0.0000 0.0100 0.0000 0.0000 197-102 3 Blades 150 5.0381 0.0050 0.0005 0.0000 0.0100 0.0000 0.0000 197-103 102 4 Turbine 28 5.0359 0.0050 0.0000 0.0100 0.0000 0.0000 197-103 102 5 Spool 3.0 5.1830 0.0050 0.0000 0.0300 0.4300 0.0000 101-103 5 Spool 3.0 5.1830 0.0020 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 </th <th>ertalk Test</th> <th>Rotor</th> <th>ype</th> <th></th> <th></th> <th></th> <th>LIO</th> <th>Test Roll</th> <th>51</th> <th></th> <th></th>	ertalk Test	Rotor	ype				LIO	Test Roll	51		
1 Blades 2 5.0350 0.0025 0.0002 0.0000 0.0000 0.0000 1 Blades 150 5.0350 0.0025 0.0002 0.0000 0.0000 0.0000 2 Blades 150 5.0381 0.0050 0.0050 0.0000 0.0000 0.0000 97-102 3 Blades 150 5.0381 0.0050 0.0000 0.0100 0.0000 97-102 4 Turbine 28 5.0359 0.0050 0.0000 0.0100 0.0000 97-103,102 4 Turbine 28 5.0359 0.0050 0.0000 0.0100 0.0000 97-103,102 5 Spool 30 5.1830 0.0050 0.0000 0.0300 0.4300 0.0000 97-103 6 Blades 142 5.0151 0.0020 0.0000 0.0300 0.0000 0.0000 93-100 93-100 93-100 93-100 93-100 93-100 93-100 93-100	Fest Wheel 1	Numb	er of stages	6 -						Cod	
1 Blades 28 5.0350 0.0025 0.0002 0.0000 0.0000 0.0000 74-300 2 Blades 150 5.0381 0.0050 0.0050 0.0000 0.0100 0.0000 0.0000 197-103 102 Blades 150 5.0381 0.0050 0.0050 0.0000 0.0100 0.0000 0.0000 197-103 102.200 5 Spool 30 5.1830 0.0050 0.0050 0.0000 0.0100 0.0000 0.0000 101-103 5 Spool 30 5.1830 0.0050 0.0000 0.0300 0.4300 0.0000 50 5.0150 0.0020 0.0020 0.0000 0.0300 0.0000 0.0000 102-300 201 142 5.0151 0.0020 0.0000 0.0300 0.0000 0.0000 102-300 201 142 5.0151 0.0020 0.0000 0.0000 0.0000 0.0000	7472-400	Stage	Туре	Count	Setpoint	Tol +	Tol -	Offset	Chord Width	Bucket Size	'At Size
2 Blades 150 5.0381 0.0050 0.0000 0.0100 0.0000 0.0000 3 Blades 150 5.0381 0.0050 0.0050 0.0000 0.0100 0.0000 0.0000 97-102 3 Blades 150 5.0381 0.0050 0.0050 0.0000 0.0100 0.0000 0.0000 97-102 3 Blades 150 5.0381 0.0050 0.0050 0.0000 0.0100 0.0000 0.0000 97-103 102.200 5 Spool 30 5.1830 0.0050 0.0000 0.0100 0.0000 0.0000 101-103 5 Spool 30 5.1830 0.0050 0.0000	473-200			28		0.0025	0.0025	0.0000	0.0000	0.0000	0.0000
3 Blades 150 5.0381 0.0050 0.0000 0.0100 0.0000 <td< td=""><td></td><td>2</td><td>Blades</td><td>150</td><td>5.0381</td><td></td><td>0.0050</td><td>0.0000</td><td>0.0100</td><td>0.0000</td><td>0.0000</td></td<>		2	Blades	150	5.0381		0.0050	0.0000	0.0100	0.0000	0.0000
97-103_102_200 50 50 50 50-150 50-150 50-150 50-150 50-150 50-150 50-150 50-150 50-150 50-150 50-150 50-150 50-151 5		3	Blades	150	5.0381	0.0050	0.0050	0.0000	0.0100	0.0000	0.0000
50 5 Spool 30 5.1830 0.0050 0.0050 0.0000 0.0100 0.0000 0.0000 01-103 6 Blades 142 5.0151 0.0020 0.0020 0.0000 0.0300 0.0000 0.0000 50-150 5 02-100 0 03-100 0 93-100 0 142 4d rotor		4	Turbine	28	5.0359	0.0050	0.0050	0.0000	0.0300	0.4300	0.0010
6 Blades 142 5.0151 0.0020 0.0000 0.0300 0.0000 0.0000 150-150 5 5 0.0020 0.0020 0.0000 0.0300 0.0000 0.0000 002-100 100 142 5.0151 0.0020 0.0020 0.0000 <		5	Spool	30	5.1830	0.0050	0.0050	0.0000	0.0100	0.0000	0.0000
150-150 102-100 103-100 102-300 201 ▲ Add rotor		6	Blades	142	5.0151	0.0020	0.0020	0.0000	0.0300	0.0000	0.0000
102-300. 201 aligned by the second s	750-150										
Add rotor	9202-100										
Suppl Add rotor	03-100										
	03-100 93-100										
e Rename	03-100 93-100										
	203-100 393-100 202-300. 201										

When in the edit pages of the setup you can select radius or diameter simply by checking the desired parameter. The same holds true with Millimeter or Inch units of measurement. When you change a given function all of the settings for this rotor table will be changed automatically and at the same time with no calculating from the operator.


When you have selected the proper rotor for the product to grind and have preformed all of the production preparation, and are ready for a measurement the first step is to do a calibration of the laser gauge.

Home radius	13.6245	_		Single check	
Cal block	5.4000	Measured	5.4000	Continuous check	
ligh tolerance	0.0005	Deviation	0.0000	Retract each time	T bar check
Low tolerance	0.0005			Rezero calibration	Close
Count Average	17 0.0000				
Max	0.0000	-			
Min	0.0000				
Range	0.0000	0.0000	• • • •	•••••	••••
	Clear				
	Save				

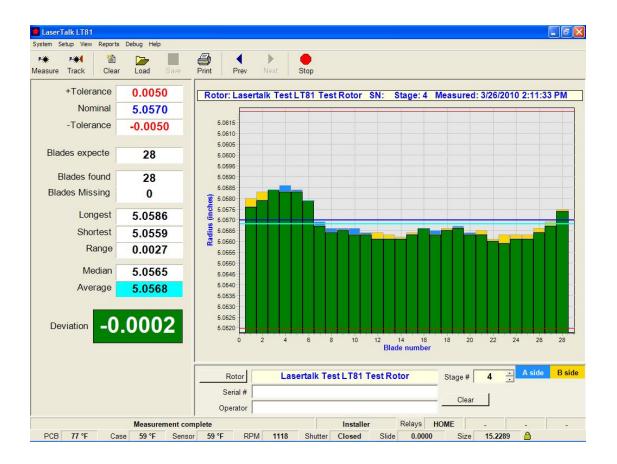
Calibration display page depicting 17 continuous calibration readings on the calibration block, note the measurement stability of the readings.

• Results printed to local or networked Windows printer

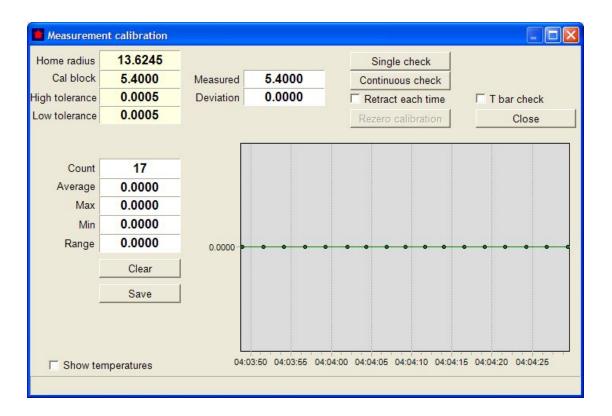
Up on completion of a measurement the measured data is saved and sent to a file for retrieval at a later time be it for the operator to review, to be printed for production requirements, or for archive storage for process requirements, all of this is on the system computer. The date can also be sent out to a local area network to be integrated into the plants data system.

		LaserTaik System J/26/2010 2:11:33 Stage Details A side 1 A side 1 A side 1 A side 1 B side 1 B side 1 B side 1 B side 1 B side 1 B side 2 B side 3 B side 2 B side 3 B side 3	LT81 Stage Ins FM 5 .0576 5 .0565 5 .0565 5 .0565 5 .0566 5 .0566 5 .0566 5 .0566 5 .0566 5 .0566 5 .0566 5 .0566	5.0579 5.0569 5.0561 5.0565 5.0560 5.0560 5.0567	5 0584 5 0566 5 0561 5 0569 5 0574 8 0584 8 0584 5 0569 5 0574	5 0586 5 0561 5 0561 5 0565 5 0565 5 0561 5 0561 5 0561	5.0564 5.0566 5.0564 5.0564 5.0564 5.0566 5.0564 5.0561	
Print preview Control Device Device								
Loor Talk System 119 Stage Ingedin Report 22/2011 119 119 Rouring UTU Tan Rour Stage system 4 Rouring UTU Tan Rour Stage system 4 Rouring UTU Tan Rour Stage system 4 Rouring UTU Tan Rour Stage system 3 Grant Stage Stage system 4 Name USU Rouring Stage								
Start	() tak							

• Results exported to Excel or XML formats for remote access and archiving


The measurement results can also be exported to Excl or XML formats for archiving, transmitting to other computer systems or for graphing.

• Automatic logging of operation or setup events


You will find built into the system an event log that record all of the operations that the system is performing.

Туре	Time	User	Description	l
 Operation 	02:11:30	Installer	Tracking stopped by operator	
 Operation 	02:11:30	Installer	Tracking stopped	
t Debug	02:11:29	Installer	Inspecting at slide position 10.1709	
t Debug	02:11:24	Installer	Inspecting at slide position 10.1709	
E Debug	02:11:20	Installer	Inspecting at slide position 10.1709	
E Debug	02:11:16	Installer	Inspecting at slide position 10.1709	
E Debug	02:11:12	Installer	Inspecting at slide position 10.1709	
E Debug	02:11:08	Installer	Inspecting at slide position 10.1709	
E Debug	02:11:04	Installer	Inspecting at slide position 10.1709	
E Debug	02:11:00	Installer	Inspecting at slide position 10.1709	
E Debug	02:10:56	Installer	Inspecting at slide position 10.1709	
t Debug	02:10:52	Installer	Inspecting at slide position 10.1709	
E Debug	02:10:48	Installer	Inspecting at slide position 10.1709	
E Debug	02:10:44	Installer	Inspecting at slide position 10.1709	
E Debug	02:10:40	Installer	Inspecting at slide position 10.1709	
E Debug	02:10:36	Installer	Inspecting at slide position 10.1709	
E Debug	02:10:32	Installer	Inspecting at slide position 10.1709	
E Debug	02:10:28	Installer	Inspecting at slide position 10.1709	
t Debug	02:10:25	Installer	Inspecting at slide position 10.1709	
t Debug	02:10:20	Installer	Inspecting at slide position 10.1709	
t Debug	02:10:16	Installer	Inspecting at slide position 10.1709	
t Debug	02:10:12	Installer	Inspecting at slide position 10.1709	
t Debug	02:10:08	Installer	Inspecting at slide position 10.1709	
Debug	02:10:06	Installer	Opening shutter	
Operation	02:10:03	Installer	Tracking started by operator	
tebug	02:09:54	Installer	Inspecting at slide position 10.1719	
t Debug	02:09:52	Installer	Opening shutter	
Operation	02:09:52	Installer	Measurement started by operator	
🗱 Debug	02:08:57	Installer	Inspecting at slide position 10.1719	
Debug	02:08:55	Installer	Opening shutter	
Config	02:08:50	Installer	Rotor stage 4 selected	
ike Debug €	02:08:50	Installer	SetProfileParms: V1:5.036 V2:0.001 V7:0.030 V9:0.003 V	8:0.43
Refresh	Al	War Erro	ning 🔽 Debug or 🖉 ProbeDebug	ries

• Graphic display of measurement results

- Built-in test and diagnostics features
- Built in Operator's Manual
- Be prepared this system will tell you things about your process that were not possible with the older system

